

D-ENV QUICKSTART GUIDE

CONTROLS

DELAY

Sets the amount of delay time (from 12 ms to 1050 ms) between an incoming gate or trigger received at the D-G IN jack and it's final destination(s).

HOLD

Sets the amount of hold time (from 12 ms to 1050 ms) for the delayed gate (only). This affects the D-G OUT jack and the delayed gate routing via the D-G switch. The HOLD time is also indicated by the yellow LED toward the top-center of the module.

ATTACK

Sets the attack timing of the EG. This range of timing depends on the envelope timing mode (see also S/L control and rear jumper settings).

DECAY

Sets the decay timing of the EG. This range of timing depends on the envelope timing mode (see also S/L control and rear jumper settings).

SUSTAIN

Sets the sustain level of the EG.

RELEASE

Sets the release timing of the EG. This range of timing depends on the envelope timing mode (see also S/L control and rear jumper settings).

D-T

Routes the Delayed Trigger to the EG. This mode will also be indicated as active while the above red LED is illuminated.

D-G

Routes the Delayed Gate to the EG. This will also be indicated as active while the above yellow LED is illuminated.

S/L

Sets the EG timing mode. "S" = shorter env timing, "L" = longer env timing (including jumper option to extend "L" mode. See also REAR JUMPER SETTING OPTIONS).

MAN

Manual Gate triggering.

JACKS

GATE IN

Gate input (0 to 10V). Activates the EG mode as: Attack \rightarrow Decay \rightarrow Sustain \rightarrow Release (ADSR).

TRIG IN

Trigger input (0 to 10V). Activates the EG mode as: Attack \rightarrow Release (AR).

D-G IN

Gate or Trigger input for initiating simultaneous Delayed Gate and Delayed Trigger function. The Delayed Gate and Delayed Trigger will always both be available at the D-G OUT and D-T OUT jacks respectively, regardless of optional routing to the EG.

D-TIME

CV (input) to Delay Time. Note that the DELAY (time) control will determine the maximum amount of available delay, hence it will "scale" the available delay range, regardless of CV input voltage.

ENV OUT

AR/ADSR Envelope output (0 to 10V).

INV OUT

Inverse of AR/ADSR Envelope output (10V nominal, 0V at peak of envelope waveform).

D-G OUT

Delayed Gate output. A delayed gate signal will be available here when a gate or trigger is present at the D-G IN jack.

D-T 0U1

Delayed Trigger output. A delayed trigger signal will be available here when a gate or trigger is present at the D-G IN jack. The Delayed Trigger will produce a fixed pulsewidth signal of about 525 µs (or 0.525 ms).

REAR JUMPER OPTIONS

P2 HEADER

The P2 header allows for extension of the "L" (long) envelope timing by a factor of three (x 3). The two positions available are: "Long:10x" and "Long:30x). The Long:30x mode is *approximately 3 times longer than the standard Long:10x mode (*see specifications for actual timing).

P3/P4 HEADER

The P3 and P4 headers allows for Unipolar or Bipolar CV optimization for the D-TIME CV input jack. Set both jumpers to the same setting, either "U" for Unipolar (0 to +5V) or "B" for Bipolar (-5V to +5V). Note that the relationship between a linear CV and the resultant DELAY time is exponential.